Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44.482
Filtrar
1.
Technol Cancer Res Treat ; 23: 15330338241241935, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38564315

RESUMO

Hepatocellular carcinoma (HCC), partly because of its complexity and high heterogeneity, has a poor prognosis and an extremely high mortality rate. In this study, mRNA sequencing expression profiles and relevant clinical data of HCC patients were gathered from different public databases. Kaplan-Meier survival curves as well as ROC curves validated that OLA1|CLEC3B was an independent predictor with better predictive capability of HCC prognosis compared to OLA1 and CLEC3B separately. Further, the cell transfection experiment verified that knockdown of OLA1 inhibited cell proliferation, facilitated apoptosis, and improved sensitivity of HCC cells to gemcitabine. In this study, the prognostic model of HCC composed of OLA1/CLEC3B genes was constructed and verified, and the prediction ability was favorable. A higher level of OLA1 along with a lower level of CEC3B is a sign of poor prognosis in HCC. We revealed a novel gene pair OLA1|CLEC3B overexpressed in HCC patients, which may serve as a promising independent predictor of HCC survival and an approach for innovative diagnostic and therapeutic strategies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Prognóstico , Neoplasias Hepáticas/genética , Apoptose/genética , Proliferação de Células/genética , Adenosina Trifosfatases , Proteínas de Ligação ao GTP
2.
Oncol Rep ; 51(6)2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38639175

RESUMO

At present, the incidence of tumours is increasing on a yearly basis, and tumourigenesis is usually associated with chromosomal instability and cell cycle dysregulation. Moreover, abnormalities in the chromosomal structure often lead to DNA damage, further exacerbating gene mutations and chromosomal rearrangements. However, the non­SMC condensin I complex subunit G (NCAPG) of the structural maintenance of chromosomes family is known to exert a key role in tumour development. It has been shown that high expression of NCAPG is closely associated with tumour development and progression. Overexpression of NCAPG variously affects chromosome condensation and segregation during cell mitosis, influences cell cycle regulation, promotes tumour cell proliferation and invasion, and inhibits apoptosis. In addition, NCAPG has been associated with tumour cell stemness, tumour resistance and recurrence. The aim of the present review was to explore the underlying mechanisms of NCAPG during tumour development, with a view towards providing novel targets and strategies for tumour therapy, and through the elucidation of the mechanisms involved, to lay the foundation for future developments in health.


Assuntos
Proteínas de Ciclo Celular , Complexos Multiproteicos , Neoplasias , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Adenosina Trifosfatases/metabolismo , Mitose , Neoplasias/genética
3.
Proc Natl Acad Sci U S A ; 121(15): e2322563121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557192

RESUMO

Mammalian switch/sucrose nonfermentable (mSWI/SNF) ATPase degraders have been shown to be effective in enhancer-driven cancers by functioning to impede oncogenic transcription factor chromatin accessibility. Here, we developed AU-24118, an orally bioavailable proteolysis-targeting chimera (PROTAC) degrader of mSWI/SNF ATPases (SMARCA2 and SMARCA4) and PBRM1. AU-24118 demonstrated tumor regression in a model of castration-resistant prostate cancer (CRPC) which was further enhanced with combination enzalutamide treatment, a standard of care androgen receptor (AR) antagonist used in CRPC patients. Importantly, AU-24118 exhibited favorable pharmacokinetic profiles in preclinical analyses in mice and rats, and further toxicity testing in mice showed a favorable safety profile. As acquired resistance is common with targeted cancer therapeutics, experiments were designed to explore potential mechanisms of resistance that may arise with long-term mSWI/SNF ATPase PROTAC treatment. Prostate cancer cell lines exposed to long-term treatment with high doses of a mSWI/SNF ATPase degrader developed SMARCA4 bromodomain mutations and ABCB1 (ATP binding cassette subfamily B member 1) overexpression as acquired mechanisms of resistance. Intriguingly, while SMARCA4 mutations provided specific resistance to mSWI/SNF degraders, ABCB1 overexpression provided broader resistance to other potent PROTAC degraders targeting bromodomain-containing protein 4 and AR. The ABCB1 inhibitor, zosuquidar, reversed resistance to all three PROTAC degraders tested. Combined, these findings position mSWI/SNF degraders for clinical translation for patients with enhancer-driven cancers and define strategies to overcome resistance mechanisms that may arise.


Assuntos
Adenosina Trifosfatases , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Ratos , Camundongos , Animais , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Linhagem Celular , Cromatina , Mamíferos/genética , Antagonistas de Receptores de Andrógenos , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética
4.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570188

RESUMO

Mistargeting of secretory proteins in the cytosol can trigger their aggregation and subsequent proteostasis decline. We have identified a VCP/p97-dependent pathway that directs non-ER-imported prion protein (PrP) into the nucleus to prevent the formation of toxic aggregates in the cytosol. Upon impaired translocation into the ER, PrP interacts with VCP/p97, which facilitates nuclear import mediated by importin-ß. Notably, the cytosolic interaction of PrP with VCP/p97 and its nuclear import are independent of ubiquitination. In vitro experiments revealed that VCP/p97 binds non-ubiquitinated PrP and prevents its aggregation. Inhibiting binding of PrP to VCP/p97, or transient proteotoxic stress, promotes the formation of self-perpetuating and partially proteinase resistant PrP aggregates in the cytosol, which compromised cellular proteostasis and disrupted further nuclear targeting of PrP. In the nucleus, RNAs keep PrP in a soluble and non-toxic conformation. Our study revealed a novel ubiquitin-independent role of VCP/p97 in the nuclear targeting of non-imported secretory proteins and highlights the impact of the chemical milieu in triggering protein misfolding.


Assuntos
Proteínas Priônicas , Príons , Proteínas Priônicas/metabolismo , Proteína com Valosina/metabolismo , Adenosina Trifosfatases/metabolismo , Proteostase , Ubiquitina/metabolismo , Príons/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(18): e2319205121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652748

RESUMO

The ParABS system is crucial for the faithful segregation and inheritance of many bacterial chromosomes and low-copy-number plasmids. However, despite extensive research, the spatiotemporal dynamics of the ATPase ParA and its connection to the dynamics and positioning of the ParB-coated cargo have remained unclear. In this study, we utilize high-throughput imaging, quantitative data analysis, and computational modeling to explore the in vivo dynamics of ParA and its interaction with ParB-coated plasmids and the nucleoid. As previously observed, we find that F-plasmid ParA undergoes collective migrations ("flips") between cell halves multiple times per cell cycle. We reveal that a constricting nucleoid is required for these migrations and that they are triggered by a plasmid crossing into the cell half with greater ParA. Using simulations, we show that these dynamics can be explained by the combination of nucleoid constriction and cooperative ParA binding to the DNA, in line with the behavior of other ParA proteins. We further show that these ParA flips act to equally partition plasmids between the two lobes of the constricted nucleoid and are therefore important for plasmid stability, especially in fast growth conditions for which the nucleoid constricts early in the cell cycle. Overall, our work identifies a second mode of action of the ParABS system and deepens our understanding of how this important segregation system functions.


Assuntos
Escherichia coli , Plasmídeos , Plasmídeos/metabolismo , Plasmídeos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Cromossomos Bacterianos/metabolismo , Cromossomos Bacterianos/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Segregação de Cromossomos , DNA Primase/metabolismo , DNA Primase/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo
6.
Acta Neurochir (Wien) ; 166(1): 181, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630203

RESUMO

PURPOSE: It is difficult to precisely predict indirect bypass development in the context of combined bypass procedures in moyamoya disease (MMD). We aimed to investigate the predictive value of magnetic resonance angiography (MRA) signal intensity in the peripheral portion of the major cerebral arteries for indirect bypass development in adult patients with MMD. METHODS: We studied 93 hemispheres from 62 adult patients who underwent combined direct and indirect revascularization between 2005 and 2019 and genetic analysis for RNF213 p.R4810K. The signal intensity of the peripheral portion of the major intracranial arteries during preoperative MRA was graded as a hemispheric MRA score (0-3 in the middle cerebral artery and 0-2 in the anterior cerebral and posterior cerebral arteries, with a high score representing low visibility) according to each vessel's visibility. Postoperative bypass development was qualitatively evaluated using MRA, and we evaluated the correlation between preoperative factors, including the hemispheric MRA score and bypass development, using univariate and multivariate analyses. RESULTS: A good indirect bypass was observed in 70% of the hemispheres. Hemispheric MRA scores were significantly higher in hemispheres with good indirect bypass development than in those with poor indirect bypass development (median: 3 vs. 1; p < 0.0001). Multiple logistic regression analysis revealed hemispheric MRA score as an independent predictor of good indirect bypass development (odds ratio, 2.1; 95% confidence interval, 1.3-3.6; p < 0.01). The low hemispheric MRA score (< 2) and wild-type RNF213 predicted poor indirect bypass development with a specificity of 0.92. CONCLUSION: Hemispheric MRA score was a predictive factor for indirect bypass development in adult patients who underwent a combined bypass procedure for MMD. Predicting poor indirect bypass development may lead to future tailored bypass surgeries for MMD.


Assuntos
Doença de Moyamoya , Adulto , Humanos , Doença de Moyamoya/diagnóstico por imagem , Doença de Moyamoya/cirurgia , Angiografia por Ressonância Magnética , Procedimentos Cirúrgicos Vasculares , Artéria Cerebral Média , Fatores de Transcrição , Adenosina Trifosfatases/genética , Ubiquitina-Proteína Ligases/genética
7.
Nat Commun ; 15(1): 3296, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632236

RESUMO

DEAD-box ATPases play crucial roles in guiding rRNA restructuring events during the biogenesis of large (60S) ribosomal subunits, but their precise molecular functions are currently unknown. In this study, we present cryo-EM reconstructions of nucleolar pre-60S intermediates that reveal an unexpected, alternate secondary structure within the nascent peptidyl-transferase-center (PTC). Our analysis of three sequential nucleolar pre-60S intermediates reveals that the DEAD-box ATPase Dbp10/DDX54 remodels this alternate base pairing and enables the formation of the rRNA junction that anchors the mature form of the universally conserved PTC A-loop. Post-catalysis, Dbp10 captures rRNA helix H61, initiating the concerted exchange of biogenesis factors during late nucleolar 60S maturation. Our findings show that Dbp10 activity is essential for the formation of the ribosome active site and reveal how this function is integrated with subsequent assembly steps to drive the biogenesis of the large ribosomal subunit.


Assuntos
Peptidil Transferases , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ribossomos/genética , RNA Ribossômico/genética , RNA Helicases DEAD-box/genética , Subunidades Ribossômicas Maiores de Eucariotos/química , Proteínas Ribossômicas/genética
8.
An Acad Bras Cienc ; 96(1): e20230971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597493

RESUMO

Paraquat (1,1'-dimethyl-4,4'-bipyridyl dichloride) is an herbicide widely used worldwide and officially banned in Brazil in 2020. Kidney lesions frequently occur, leading to acute kidney injury (AKI) due to exacerbated reactive O2 species (ROS) production. However, the consequences of ROS exposure on ionic transport and the regulator local renin-angiotensin-aldosterone system (RAAS) still need to be elucidated at a molecular level. This study evaluated how ROS acutely influences Na+-transporting ATPases and the renal RAAS. Adult male Wistar rats received paraquat (20 mg/kg; ip). After 24 h, we observed body weight loss and elevation of urinary flow and serum creatinine. In the renal cortex, paraquat increased ROS levels, NADPH oxidase and (Na++K+)ATPase activities, angiotensin II-type 1 receptors, tumor necrosis factor-α (TNF-α), and interleukin-6. In the medulla, paraquat increased ROS levels and NADPH oxidase activity but inhibited (Na++K+)ATPase. Paraquat induced opposite effects on the ouabain-resistant Na+-ATPase in the cortex (decrease) and medulla (increase). These alterations, except for increased serum creatinine and renal levels of TNF-α and interleukin-6, were prevented by 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (tempol; 1 mmol/L in drinking water), a stable antioxidant. In summary, after paraquat poisoning, ROS production culminated with impaired medullary function, urinary fluid loss, and disruption of Na+-transporting ATPases and angiotensin II signaling.


Assuntos
Paraquat , Sistema Renina-Angiotensina , Ratos , Animais , Masculino , Espécies Reativas de Oxigênio/metabolismo , Paraquat/metabolismo , Paraquat/farmacologia , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Creatinina/metabolismo , Creatinina/urina , Interleucina-6 , Fator de Necrose Tumoral alfa/metabolismo , Ratos Wistar , Rim , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Sódio/metabolismo , Sódio/farmacologia , NADPH Oxidases/metabolismo , NADPH Oxidases/farmacologia
9.
Protein Sci ; 33(5): e4981, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591662

RESUMO

Translesion DNA synthesis pathways are necessary to ensure bacterial replication in the presence of DNA damage. Translesion DNA synthesis carried out by the PolV mutasome is well-studied in Escherichia coli, but ~one third of bacteria use a functionally homologous protein complex, consisting of ImuA, ImuB, and ImuC (also called DnaE2). Numerous in vivo studies have shown that all three proteins are required for translesion DNA synthesis and that ImuC is the error-prone polymerase, but the roles of ImuA and ImuB are unclear. Here we carry out biochemical characterization of ImuA and a truncation of ImuB from Myxococcus xanthus. We find that ImuA is an ATPase, with ATPase activity enhanced in the presence of DNA. The ATPase activity is likely regulated by the C-terminus, as loss of the ImuA C-terminus results in DNA-independent ATP hydrolysis. We also find that ImuA binds a variety of DNA substrates, with DNA binding affinity affected by the addition of ADP or adenylyl-imidodiphosphate. An ImuB truncation also binds DNA, with lower affinity than ImuA. In the absence of DNA, ImuA directly binds ImuB with moderate affinity. Finally, we show that ImuA and ImuB self-interact, but that ImuA is predominantly a monomer, while truncated ImuB is a trimer in vitro. Together, with our findings and the current literature in the field, we suggest a model for translesion DNA synthesis, where a trimeric ImuB would provide sufficient binding sites for DNA, the ß-clamp, ImuC, and ImuA, and where ImuA ATPase activity may regulate assembly and disassembly of the translesion DNA synthesis complex.


Assuntos
Myxococcus xanthus , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , 60535 , Escherichia coli/genética , Escherichia coli/metabolismo , DNA/genética , Replicação do DNA
10.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612937

RESUMO

Kaempferol (KAE) is a natural flavonoid with powerful reactive oxygen species (ROS) scavenging properties and beneficial effects on ex vivo sperm functionality. In this paper, we studied the ability of KAE to prevent or ameliorate structural, functional or oxidative damage to frozen-thawed bovine spermatozoa. The analysis focused on conventional sperm quality characteristics prior to or following thermoresistance tests, namely the oxidative profile of semen alongside sperm capacitation patterns, and the levels of key proteins involved in capacitation signaling. Semen samples obtained from 30 stud bulls were frozen in the presence of 12.5, 25 or 50 µM KAE and compared to native ejaculates (negative control-CtrlN) as well as semen samples cryopreserved in the absence of KAE (positive control-CtrlC). A significant post-thermoresistance test maintenance of the sperm motility (p < 0.001), membrane (p < 0.001) and acrosome integrity (p < 0.001), mitochondrial activity (p < 0.001) and DNA integrity (p < 0.001) was observed following supplementation with all KAE doses in comparison to CtrlC. Experimental groups supplemented with all KAE doses presented a significantly lower proportion of prematurely capacitated spermatozoa (p < 0.001) when compared with CtrlC. A significant decrease in the levels of the superoxide radical was recorded following administration of 12.5 (p < 0.05) and 25 µM KAE (p < 0.01). At the same time, supplementation with 25 µM KAE in the cryopreservation medium led to a significant stabilization of the activity of Mg2+-ATPase (p < 0.05) and Na+/K+-ATPase (p < 0.0001) in comparison to CtrlC. Western blot analysis revealed that supplementation with 25 µM KAE in the cryopreservation medium prevented the loss of the protein kinase A (PKA) and protein kinase C (PKC), which are intricately involved in the process of sperm activation. In conclusion, we may speculate that KAE is particularly efficient in the protection of sperm metabolism during the cryopreservation process through its ability to promote energy synthesis while quenching excessive ROS and to protect enzymes involved in the process of sperm capacitation and hyperactivation. These properties may provide supplementary protection to spermatozoa undergoing the freeze-thaw process.


Assuntos
Antígenos de Grupos Sanguíneos , Sêmen , Bovinos , Masculino , Animais , Quempferóis/farmacologia , Espécies Reativas de Oxigênio , Motilidade dos Espermatozoides , Espermatozoides , Triptofano Oxigenase , Adenosina Trifosfatases , Anticorpos
11.
J Cell Biol ; 223(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448163

RESUMO

Endoplasmic reticulum (ER) proteins are degraded by proteasomes in the cytosol through ER-associated degradation (ERAD). This process involves the retrotranslocation of substrates across the ER membrane, their ubiquitination, and membrane extraction by the Cdc48/Npl4/Ufd1 ATPase complex prior to delivery to proteasomes for degradation. How the presence of a folded luminal domain affects substrate retrotranslocation and this event is coordinated with subsequent ERAD steps remains unknown. Here, using a model substrate with a folded luminal domain, we showed that Cdc48 ATPase activity is sufficient to drive substrate retrotranslocation independently of ERAD membrane components. However, the complete degradation of the folded luminal domain required substrate-tight coupling of retrotranslocation and proteasomal degradation, which was ensured by the derlin Dfm1. Mutations in Dfm1 intramembrane rhomboid-like or cytosolic Cdc48-binding regions resulted in partial degradation of the substrate with accumulation of its folded domain. Our study revealed Dfm1 as a critical regulator of Cdc48-driven retrotranslocation and highlights the importance of coordinating substrate retrotranslocation and degradation during ERAD.


Assuntos
Retículo Endoplasmático , Proteínas de Membrana , Complexo de Endopeptidases do Proteassoma , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases/genética , Citosol , Retículo Endoplasmático/metabolismo , Degradação Associada com o Retículo Endoplasmático , Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios Proteicos , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Sci Rep ; 14(1): 5237, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433281

RESUMO

Inflammation is implicated as a cause in many diseases. Most of the anti-inflammatory agents in use are synthetic and there is an unmet need for natural substance-derived anti-inflammatory agents with minimal side effects. Aiouea padiformis belongs to the Lauraceae family and is primarily found in tropical regions. While some members of the Aiouea genus are known to possess anti-inflammatory properties, the anti-inflammatory properties of Aiouea padiformis extract (AP) have not been investigated. In this study, we aimed to examine the anti-inflammatory function of AP through the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome and elucidate the underlying mechanisms. Treatment with AP inhibited the secretion of interleukin-1 beta (IL-1ß) mediated by NLRP3 inflammasome in J774A.1 and THP-1 cells without affecting the viability. In addition, AP treatment did not influence NF-κB signaling, potassium efflux, or intracellular reactive oxygen species (ROS) production-all of which are associated with NLRP3 inflammasome activation. However, intriguingly, AP treatment significantly reduced the ATPase activity of NLRP3, leading to the inhibition of ASC oligomerization and speck formation. Consistent with cellular experiments, the anti-inflammatory property of AP in vivo was also evaluated using an LPS-induced inflammation model in zebrafish, demonstrating that AP hinders NLRP3 inflammasome activation.


Assuntos
Lauraceae , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Inflamassomos , Peixe-Zebra , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Adenosina Trifosfatases , Extratos Vegetais/farmacologia
13.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38515312

RESUMO

Proteins from hyperthermophiles often contain a large number of ionic interactions. Close examination of the previously determined crystal structure of the ATPase domain of MutL from a hyperthermophile, Aquifex aeolicus, revealed that the domain contains a continuous ion-pair/hydrogen-bond network consisting of 11 charged amino acid residues on a ß-sheet. Mutations were introduced to disrupt the network, showing that the more extensively the network was disrupted, the greater the thermostability of the protein was decreased. Based on urea denaturation analysis, a thermodynamic parameter, energy for the conformational stability, was evaluated, which indicated that amino acid residues in the network contributed additively to the protein stability. A continuous network rather than a cluster of isolated interactions would pay less entropic penalty upon fixing the side chains to make the same number of ion pairs/hydrogen bonds, which might contribute more favorably to the structural formation of thermostable proteins.


Assuntos
Bactérias , Dobramento de Proteína , Ligação de Hidrogênio , Bactérias/genética , Íons , Adenosina Trifosfatases/genética , Aminoácidos , Aquifex
14.
Ann Clin Transl Neurol ; 11(4): 1075-1079, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504481

RESUMO

ATP1A1 encodes a sodium-potassium ATPase that has been linked to several neurological diseases. Using exome and genome sequencing, we identified the heterozygous ATP1A1 variant NM_000701.8: c.2707G>A;p.(Gly903Arg) in two unrelated children presenting with delayed motor and speech development and autism. While absent in controls, the variant occurred de novo in one proband and co-segregated in two affected half-siblings, with mosaicism in the healthy mother. Using a specific ouabain resistance assay in mutant transfected HEK cells, we found significantly reduced cell viability. Demonstrating loss of ATPase function, we conclude that this novel variant is pathogenic, expanding the phenotype spectrum of ATP1A1.


Assuntos
Transtorno Autístico , Deficiência Intelectual , Criança , Humanos , Transtorno Autístico/genética , Deficiência Intelectual/genética , Família , Irmãos , Adenosina Trifosfatases , ATPase Trocadora de Sódio-Potássio/genética
15.
J Virol ; 98(4): e0156523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38445884

RESUMO

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a worldwide threat in the past 3 years. Although it has been widely and intensively investigated, the mechanism underlying the coronavirus-host interaction requires further elucidation, which may contribute to the development of new antiviral strategies. Here, we demonstrated that the host cAMP-responsive element-binding protein (CREB1) interacts with the non-structural protein 13 (nsp13) of SARS-CoV-2, a conserved helicase for coronavirus replication, both in cells and in lung tissues subjected to SARS-CoV-2 infection. The ATPase and helicase activity of viral nsp13 were shown to be potentiated by CREB1 association, as well as by Protein kinase A (PKA)-mediated CREB1 activation. SARS-CoV-2 replication is significantly suppressed by PKA Cα, cAMP-activated protein kinase catalytic subunit alpha (PRKACA), and CREB1 knockdown or inhibition. Consistently, the CREB1 inhibitor 666-15 has shown significant antiviral effects against both the WIV04 strain and the Omicron strain of the SARS-CoV-2. Our findings indicate that the PKA-CREB1 signaling axis may serve as a novel therapeutic target against coronavirus infection. IMPORTANCE: In this study, we provide solid evidence that host transcription factor cAMP-responsive element-binding protein (CREB1) interacts directly with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) helicase non-structural protein 13 (nsp13) and potentiate its ATPase and helicase activity. And by live SARS-CoV-2 virus infection, the inhibition of CREB1 dramatically impairs SARS-CoV-2 replication in vivo. Notably, the IC50 of CREB1 inhibitor 666-15 is comparable to that of remdesivir. These results may extend to all highly pathogenic coronaviruses due to the conserved nsp13 sequences in the virus.


Assuntos
COVID-19 , Proteínas não Estruturais Virais , Humanos , Proteínas não Estruturais Virais/metabolismo , Pandemias , Replicação Viral , DNA Helicases/metabolismo , Adenosina Trifosfatases , SARS-CoV-2/metabolismo , Antivirais/farmacologia , Antivirais/química , Proliferação de Células , RNA Helicases/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética
16.
J Phys Chem Lett ; 15(13): 3502-3508, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38517341

RESUMO

RNA ATPases/helicases remodel substrate RNA-protein complexes in distinct ways. The different RNA ATPases/helicases, taking part in the spliceosome complex, reshape the RNA/RNA-protein contacts to enable premature-mRNA splicing. Among them, the bad response to refrigeration 2 (Brr2) helicase promotes U4/U6 small nuclear (sn)RNA unwinding via ATP-driven translocation of the U4 snRNA strand, thus playing a pivotal role during the activation, catalytic, and disassembly phases of splicing. The plastic Brr2 architecture consists of an enzymatically active N-terminal cassette (N-cassette) and a structurally similar but inactive C-terminal cassette (C-cassette). The C-cassette, along with other allosteric effectors and regulators, tightly and timely controls Brr2's function via an elusive mechanism. Here, microsecond-long molecular dynamics simulations, dynamical network theory, and community network analysis are combined to elucidate how allosteric effectors/regulators modulate the Brr2 function. We unexpectedly reveal that U4 snRNA itself acts as an allosteric regulator, amplifying the cross-talk of distal Brr2 domains and triggering a conformational reorganization of the protein. Our findings offer fundamental understanding into Brr2's mechanism of action and broaden our knowledge on the sophisticated regulatory mechanisms by which spliceosome ATPases/helicases control gene expression. This includes their allosteric regulation exerted by client RNA strands, a mechanism that may be broadly applicable to other RNA-dependent ATPases/helicases.


Assuntos
Ribonucleoproteínas Nucleares Pequenas , Spliceossomos , Humanos , Adenosina Trifosfatases/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , RNA/metabolismo , RNA Helicases/química , RNA Helicases/genética , RNA Helicases/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo
17.
Stem Cell Res Ther ; 15(1): 81, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486306

RESUMO

BACKGROUND: Human corneal endothelial cells lack regenerative capacity through cell division in vivo. Consequently, in the case of trauma or dystrophy, the only available treatment modality is corneal tissue or primary corneal endothelial cell transplantation from cadaveric donor which faces a high global shortage. Our ultimate goal is to use the state-of-the-art 3D-bioprint technology for automated production of human partial and full-thickness corneal tissues using human stem cells and functional bioinks. In this study, we explore the feasibility of bioprinting the corneal endothelium using human pluripotent stem cell derived corneal endothelial cells and hydrazone crosslinked hyaluronic acid bioink. METHODS: Corneal endothelial cells differentiated from human pluripotent stem cells were bioprinted using optimized hydrazone crosslinked hyaluronic acid based bioink. Before the bioprinting process, the biocompatibility of the bioink with cells was first analyzed with transplantation on ex vivo denuded rat and porcine corneas as well as on denuded human Descemet membrane. Subsequently, the bioprinting was proceeded and the viability of human pluripotent stem cell derived corneal endothelial cells were verified with live/dead stainings. Histological and immunofluorescence stainings involving ZO1, Na+/K+-ATPase and CD166 were used to confirm corneal endothelial cell phenotype in all experiments. Additionally, STEM121 marker was used to identify human cells from the ex vivo rat and porcine corneas. RESULTS: The bioink, modified for human pluripotent stem cell derived corneal endothelial cells successfully supported both the viability and printability of the cells. Following up to 10 days of ex vivo transplantations, STEM121 positive cells were confirmed on the Descemet membrane of rat and porcine cornea demonstrating the biocompatibility of the bioink. Furthermore, biocompatibility was validated on denuded human Descemet membrane showing corneal endothelial -like characteristics. Seven days post bioprinting, the corneal endothelial -like cells were viable and showed polygonal morphology with expression and native-like localization of ZO-1, Na+/K+-ATPase and CD166. However, mesenchymal-like cells were observed in certain areas of the cultures, spreading beneath the corneal endothelial-like cell layer. CONCLUSIONS: Our results demonstrate the successful printing of human pluripotent stem cell derived corneal endothelial cells using covalently crosslinked hyaluronic acid bioink. This approach not only holds promise for a corneal endothelium transplants but also presents potential applications in the broader mission of bioprinting the full-thickness human cornea.


Assuntos
Bioimpressão , Células-Tronco Pluripotentes , Humanos , Ratos , Animais , Suínos , Engenharia Tecidual/métodos , Células Endoteliais , Bioimpressão/métodos , Ácido Hialurônico/farmacologia , Adenosina Trifosfatases
18.
Mol Cell ; 84(7): 1321-1337.e11, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38513662

RESUMO

Intracellular Mg2+ (iMg2+) is bound with phosphometabolites, nucleic acids, and proteins in eukaryotes. Little is known about the intracellular compartmentalization and molecular details of Mg2+ transport into/from cellular organelles such as the endoplasmic reticulum (ER). We found that the ER is a major iMg2+ compartment refilled by a largely uncharacterized ER-localized protein, TMEM94. Conventional and AlphaFold2 predictions suggest that ERMA (TMEM94) is a multi-pass transmembrane protein with large cytosolic headpiece actuator, nucleotide, and phosphorylation domains, analogous to P-type ATPases. However, ERMA uniquely combines a P-type ATPase domain and a GMN motif for ERMg2+ uptake. Experiments reveal that a tyrosine residue is crucial for Mg2+ binding and activity in a mechanism conserved in both prokaryotic (mgtB and mgtA) and eukaryotic Mg2+ ATPases. Cardiac dysfunction by haploinsufficiency, abnormal Ca2+ cycling in mouse Erma+/- cardiomyocytes, and ERMA mRNA silencing in human iPSC-cardiomyocytes collectively define ERMA as an essential component of ERMg2+ uptake in eukaryotes.


Assuntos
Adenosina Trifosfatases , ATPases do Tipo-P , Animais , Camundongos , Humanos , Adenosina Trifosfatases/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Transporte Biológico , ATPases do Tipo-P/metabolismo , Cálcio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático
19.
J Proteome Res ; 23(4): 1174-1187, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38427982

RESUMO

Protein homeostasis is essential for cyanobacteria to maintain proper cellular function under adverse and fluctuating conditions. The AAA+ superfamily of proteolytic complexes in cyanobacteria plays a critical role in this process, including ClpXP, which comprises a hexameric ATPase ClpX and a tetradecameric peptidase ClpP. Despite the physiological effects of ClpX on growth and photosynthesis, its potential substrates and underlying mechanisms in cyanobacteria remain unknown. In this study, we employed a streptavidin-biotin affinity pull-down assay coupled with label-free proteome quantitation to analyze the interactome of ClpX in the model cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis). We identified 503 proteins as potential ClpX-binding targets, many of which had novel interactions. These ClpX-binding targets were found to be involved in various biological processes, with particular enrichment in metabolic processes and photosynthesis. Using protein-protein docking, GST pull-down, and biolayer interferometry assays, we confirmed the direct association of ClpX with the photosynthetic proteins, ferredoxin-NADP+ oxidoreductase (FNR) and phycocyanin subunit (CpcA). Subsequent functional investigations revealed that ClpX participates in the maintenance of FNR homeostasis and functionality in Synechocystis grown under different light conditions. Overall, our study provides a comprehensive understanding of the extensive functions regulated by ClpX in cyanobacteria to maintain protein homeostasis and adapt to environmental challenges.


Assuntos
Fotossíntese , Synechocystis , Fotossíntese/genética , Synechocystis/genética , Synechocystis/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Ficocianina/metabolismo
20.
J Extracell Vesicles ; 13(4): e12426, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38532609

RESUMO

Besides participating in diverse pathological and physiological processes, extracellular vesicles (EVs) are also excellent drug-delivery vehicles. However, clinical drugs modulating EV levels are still lacking. Here, we show that proton pump inhibitors (PPIs) reduce EVs by enhancing macropinocytosis-mediated EV uptake. PPIs accelerate intestinal cell endocytosis of autocrine immunosuppressive EVs through macropinocytosis, thereby aggravating inflammatory bowel disease. PPI-induced macropinocytosis facilitates the clearance of immunosuppressive EVs from tumour cells, improving antitumor immunity. PPI-induced macropinocytosis also increases doxorubicin and antisense oligonucleotides of microRNA-155 delivery efficiency by EVs, leading to enhanced therapeutic effects of drug-loaded EVs on tumours and acute liver failure. Mechanistically, PPIs reduce cytosolic pH, promote ATP6V1A (v-ATPase subunit) disassembly from the vacuolar membrane and enhance the assembly of plasma membrane v-ATPases, thereby inducing macropinocytosis. Altogether, our results reveal a mechanism for macropinocytic regulation and PPIs as potential modulators of EV levels, thus regulating their functions.


Assuntos
Vesículas Extracelulares , Inibidores da Bomba de Prótons , Endocitose , Pinocitose , Adenosina Trifosfatases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...